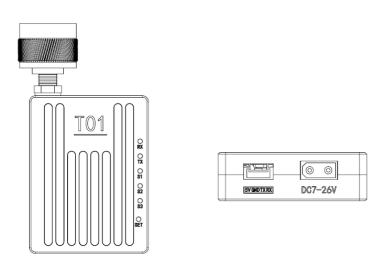
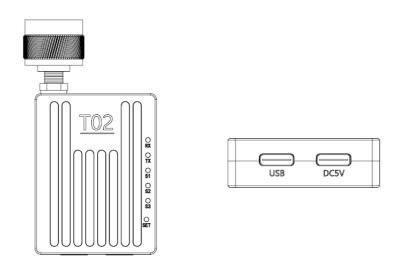
T900-MINI 系列使用指南

900MHz 1W 数传电台 版本号: 20230410V2.0



目录


1、	产品简介	3
2、	产品配件	4
	2.1、T01 配件	4
	2.2、T02 配件	5
3、	产品连接	6
	3.1、T01 连接示意图	6
	3.2、T02 连接示意图	7
4、	产品使用	8
	4.1、T01/T02 电源供电	
	4.2、T01 接口定义	8
	4.3、T02 接口定义	
	4.4、T01/T02 指示灯含义	10
	4.5、AT 软件参数配置	11
	4.6、AT 软件版本升级	13
5、	点对点模式配置	
	5.1 主端配置(AT 软件)	
	5.2 从端配置(AT 软件)	
6、	点对点+中继模式配置	
	6.1 主从配置(AT 软件)	
	6.2 中继配置(AT 软件)	
7、	点对多点模式配置	
	7.1 主端配置(AT 软件)	
	7.2 从端配置(AT 软件)	
8、	有中心 MESH 模式配置	
	8.1 主端配置(AT 软件)	19
	8.2 从	20

1、产品简介

T900-MINI 系列为 T900 系列的一款小型化数传电台。T900-MINI 系列主要包括 T01 和 T02 两种型号。两者唯一的区别就是接口不同。T01 主要用于无人机端,而 T02 采用 TypeC 接口主要用于地面端。两者都具有体积小,集成度好,灵敏度高等特点。 T900-MINI 系列产品工作在 902~928MHz 频段。在环境良好的情况下最大传输距离可达 60KM。

T01 模块和接口示意图

T02 模块和接口示意图

2、产品配件

2.1、T01 配件

T900-MINI-T01 配件(1 个)				
序号	名称	说明	数量	
1	T900-MINI-T01	T01 模块	1	
2	小胶棒天线	2.5dBi	1	
3	XT30 电源半裸线		1	
4	GH1.25-4pin 串口半裸线		1	

T900-MINI-T01 模块

小胶棒天线

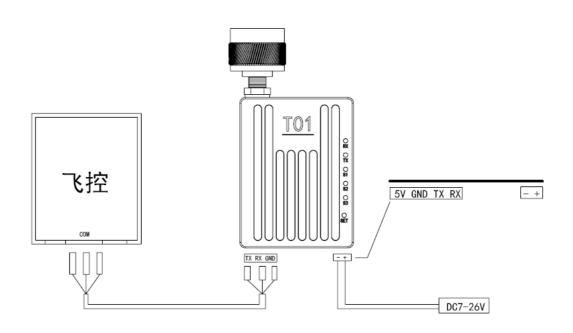
XT30 电源半裸线

GH1.25-4PIN 半裸线

2.2、T02 配件

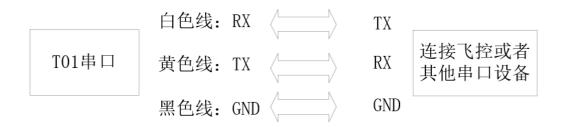
T900-MINI-T02 配件(1 个)				
序号	名称	说明	数量	
1	T900-MINI-T02	T02 模块	1	
2	小胶棒天线	2.5dBi	1	
3	TypeC 转 USB 线		2	

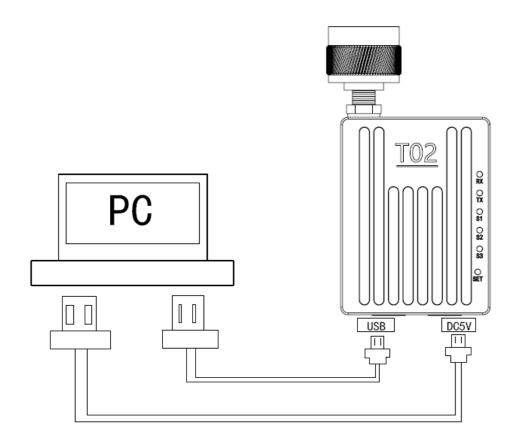
T900-MINI-T02 模块


TypeC 转 USB

小胶棒天线

3、产品连接


3.1、T01 连接示意图


T900-MINI-T01 连接步骤

- ◆ SMA 连接天线。
- ◆ 给 T01 供电 DC7~26V,典型值为+12V。
- ◆ 串口连接方式如下,串口也可用于 AT 命令参数配置。

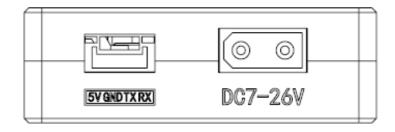
(注意:请确认 T01 设备串口是 TTL 电平还是 RS232 电平)

3.2、T02 连接示意图

T900-MINI-T02 连接步骤

- ◆ SMA 连接天线。
- ◆ 2根 USB 线都连接到电脑, USB 口既提供供电 5V, 同时支持数据传输和 参数配置。DC5V 接口只提供供电。

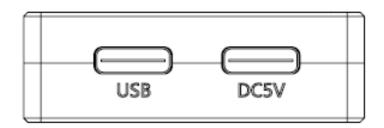
4、产品使用


4.1、T01/T02 电源供电

◆ T900-MINI-T01 设备采用 DC 供电,供电电压为 7~26V,典型工作值为 +12V。T01 在不同电压数据 100%发送所需的最大电流见如下表格。

供电电压	峰值电流(A)	平均电流(A)
7V	1.03A	0.76A
12V	0.60A	0.44A
24V	0.30A	0.22A
26V	0.28A	0.20A

◆ T900-MINI-T02 设备采用 DC5V 和 USB 同时供电。


4.2、T01 接口定义

T01 设备的接口有 2 个,一个串口和一个供电口,串口连接时注意设备是 TTL 电平还是 RS232 电平。电源接口采用的是 XT30 端子的公头,支持电压 7~26V。

序号	接口	说明	备注
1	GH1.25-4PIN 串口	白色线: RX	注意串口是 TTL 电平
		黄色线: TX	还是 RS232 电平
		黑色线: GND	
		红色线: 5V@1A 输出	
2	XT30 电源公头内针	DC7~26V	

4.3、T02 接口定义

T02接口是2个TypeC口,电压都是标准5V。其中USB标识的接口既支持供电也支持数据传输。DC5V接口只提供供电。

序号	接口	说明	备注
1	USB □	即可供电,又可以传输数据和参数配置	
2	DC5V	只提供供电	

4.4、T01/T02 指示灯含义

发射灯 TX(红色)

当 TX 灯亮起时,表明模块在发送数据。

接收灯 RX(红色)

当 RX 灯亮起时,表示模块在接收数据。

上电配置 SET 按钮

按住 SET 按钮然后上电,释放按钮将进入 AT 命令即可进行参数配置。

接收信号强度灯(RSSI 3 个绿灯)

能量灯亮的数量越多,即信号接收强度越大。

RSSI 灯代表接收信号强度大小			
RSSI 能量灯亮个数	接收能量 dBm		
3 个 RSSI 灯全亮	-50dBm 左右		
2个 RSSI 灯亮	-80dBm 左右		
1个RSSI 灯亮	-95dBm 左右		

模块类型	模式	T900-MINI 系列指示灯状态		
		RX 灯	TX 灯	RSSI 123 灯
所有	AT 命令配置模式	灭	灭	全灭
主	正常工作	接收数据时闪烁	常亮	与接收信号强度成比例
从	未同步	灭	灭	每 860ms 循环亮
从	同步后	常亮	发送数据时闪烁	与接收信号强度成比例
中继	未同步	和发送灯交替闪烁	和接收灯交替闪烁	每 860ms 循环亮
中继	同步后	接收数据时闪烁	发送数据时闪烁	与接收信号强度
		否则常亮	否则常亮	成比例

当主从设备配对成功以后,主设备的电源灯和 TX 灯常亮,从设备的电源灯和 RX 的灯常亮。如果主从配对不成功,从设备的 RSSI 将一直处于搜索状态。此时应该重新 核对配置的参数。当串口数据收发时,主设备的 RX 灯和从设备的 TX 灯将会闪烁。

4.5、AT 软件参数配置

AT 命令配置参数可以选择通用串口助手或者使用上位机 AT 软件进行配置。

用户可以使用通用串口终端,通过数据串口,自行使用 AT 命令进行参数配置。 AT 命令配置方法详见《T900 用户手册》第六章 AT 命令/寄存器说明。《T900 用户手册》第五章数据串口中说明了如何进入 AT 命令模式。

SSCOM 通用串口工具配置参数操作步骤:

- 1) 正确连接设备串口和电源,设置正确的波特率,打开串口
- 2) 输入'+++', 进入 AT 命令模式
- 3) 输入 AT&V, 显示当前配置参数
- 4) 使用 AT 命令,配置所需的参数(详见《T900 用户手册》第六章 AT 命令/寄存器说明)
- 5) 配置完成后,输入AT&W,保存参数
- 6) 输入 ATA, 退出 AT 命令模式, 开始正常工作。

用户也可以使用 T900 AT 配置平台,通过数据串口进行参数配置。AT 上位机软件方便用户快速配置 T900。其所有功能也可通过上面的通用串口工具手动输入 AT 命令实现。

AT 软件配置参数操作步骤

- 1)设置正确波特率后,打开串口。(一般波特率是 9600/115200bps)
- 2) 点击进入 AT 模式(发送'+++'),在数据框会返回 Welcome To Use T900 OK, 即表示进入 AT 模式成功
- 3) 点击查询(发送 AT&V), 此时查询到的参数会在左侧的参数列表中——显示
- 4) 根据需要修改对应的参数后,点击参数框右侧的黄色按钮(发送 AT 命令设置)
- 5) 所有需要修改的参数配置完成后,点击保存按钮(发送 AT&W)
- 6) 点击退出 AT 模式按钮(发送 ATA),回到正常工作状态。

4.6、AT 软件版本升级

AT 软件版本升级操作步骤

- 1) 设置正确波特率后, 打开串口。(一般波特率是 9600/115200bps)
- 2) 点击升级按钮,选择升级文件。
- 3) 固件加载过程,该过程中可以点击取消按钮,取消升级。
- 4) 固件更新阶段,该阶段无法取消升级,同时不可断电。若意外断电,会导致设备损坏。
- 5) 升级完成。断电重启设备。

5、点对点模式配置

5.1 主端配置 (AT 软件)

- 1) 数传电台上电,连接数据串口,点击进入 AT 模式,点击查询。
- 2) 点击恢复出厂设置,选择点对点主模式,点击 OK。
- 3) 点击查询,配置网络 ID 号,串口波特率,空口速率等(其他参数可默认)
- 4) 点击保存。
- 5) 点击退出 AT 模式。

5.2 从端配置 (AT 软件)

- 1) 数传电台上电,连接数据串口,进入AT配置平台。
- 2) 点击恢复出厂设置,选择点对点从模式,点击 OK。
- 3) 点击查询, 配置与主端相同的网络 ID 号, 空口速率, 串口波特率等。
- 4) 点击保存。
- 5) 点击退出 AT 模式。

6、点对点+中继模式配置

6.1 主从配置(AT软件)

主端与从端的具体配置与5.1、5.2配置一样。

6.2 中继配置 (AT 软件)

- 1) 数传电台上电,连接串口,进入AT配置平台。
- 2) 点击恢复出厂设置,选择点对点中继模式,点击OK。
- 3) 点击查询,配置与主端相同网络 ID 号,串口波特率,空口速率等参数。
- 4) 配置中继序号为 1,如果有 N 个中继,则中继序号分别配置 1~N。 (是否有中继这个参数主,从,中继都不用配置,主端自动识别中继)
- 5) 点击保存。
- 6) 点击退出 AT 模式。

7、点对多点模式配置

7.1 主端配置 (AT 软件)

- 1) 数传电台上电,连接串口,进入AT配置平台。
- 2) 点击恢复出厂设置,选择点对多点主模式,点击OK。
- 3) 点击查询,用户自行配置需要的网络 ID 号,串口波特率,空口速率。
- 4) 本机地址=1,同步地址=0,目的地址=0,信道接入方式选择 RTS/CTS。
- 5) 点击保存。
- 6) 点击退出 AT 模式。

7.2 从端配置 (AT 软件)

- 1) 数传电台上电,连接串口,进入AT配置平台。
- 2) 点击恢复出厂设置,选择点对多点从模式,点击 OK。
- 3) 点击查询,配置与主端相同的网络 ID 号,空口速率,串口波特率等。
- 4) 本机地址=2~N+1, N 为从端总个数。

同步地址=1,同步地址=主端的本机地址。

目的地址=0,信道接入方式选择 RTS/CTS。

- 5) 点击保存。
- 6) 点击退出 AT 模式。

8、有中心 MESH 模式配置

8.1 主端配置 (AT 软件)

- 1) 数传电台上电,连接串口,进入AT配置平台。
- 2) 点击恢复出厂设置,选择有中心 MESH 主模式,点击 OK。
- 3) 点击查询,用户自行配置需要的网络ID号,串口波特率,空口速率。
- 4) 本机地址=1. 同步地址=0. 目的地址=0。

信道接入方式选择 TDMA_AUTO。

TDMA 时隙分配=15。

- 5) 点击保存。
- 6) 点击退出 AT 模式。

8.2 从端配置 (AT 软件)

- 1) 数传电台上电,连接串口,进入AT配置平台。
- 2) 点击恢复出厂设置,选择有中心 MESH 从模式,点击 OK。
- 3) 点击查询,配置与主端相同的网络 ID 号,空口速率,串口波特率等。
- 4) 本机地址=2~N+1, N 为从端总个数。

同步地址=1, 同步地址=主端的本机地址, 目的地址=0。

信道接入方式选择 TDMA_AUTO。

从端 TDMA 时隙分配不用配置。

- 5) 点击保存。
- 6) 点击退出 AT 模式。